Bitumen-based plastitar: a novel plastic form variant in terrestrial environments

Author:

Ehlers Sonja M.,Ellrich Julius A.

Abstract

Plastitar has recently been reported in marine environments worldwide. Plastitar is plastic embedded in crude oil residues. This plastic form, i.e., geochemically or -physically altered plastic, has been proposed to derive from water motion driven plastic-crude oil-interactions in pelagic and benthic habitats. In this study, we introduce bitumen-based plastitar: a novel plastic form variant that we detected in supra-intertidal marina walls, riverbank cobblestone pavements, and roads. Fourier-transform infrared (FTIR) spectroscopy identified plastic fragments, bottle cap plastic liners, and paint chips, that we had found firmly embedded in black joint sealant, as polypropylene, polyethylene, polyester epoxide, and alkyd varnish. Field observations, pyrolysis-gas chromatography/mass spectroscopy (PY-GC/MS) and FTIR indicated that the black joint sealant consisted of a bitumen-mineral-mixture that is commonly used as adhesive and filler in hydraulic engineering and road construction. Brittle plastic fragments showed signs of melting such as bubbles, holes, and melt inclusions and, therefore, constituted pyroplastics, i.e., incompletely combusted and melted plastics with rock-like appearances. Bottle caps and paint chips were deeply pressed into the joint sealant. These findings indicate that bitumen-based plastitar is formed by plastic being (un)intentionally included into heated liquid bitumen or pressed into hardened bitumen. Our field inspections detected that bitumen-based plastitar degraded by up to 66% over 608 days releasing microplastics (plastics < 0.5 cm) into the environment. Overall, our study shows, for the first time, that plastitar variants can form from materials other than crude oil residues and in terrestrial environments. We hope that our study will increase the awareness for these novel plastic fixation processes, i.e., plastic agglomeration with bitumen through heat and pressure, which could help to prevent plastitar formation during future construction works.

Publisher

Frontiers Media SA

Reference50 articles.

1. Plastics and microplastics in the oceans: from emerging pollutants to emerged threat;Avio;Mar. Environ. Res.,2017

2. Review on mechanisms of bitumen modification: process and variables;Bhagat,2022

3. Verwendung von Bitumen und Geotextilstoffen im Wasserbau;Bozdynska,1989

4. Effects of naturally sourced bitumen samples from Alberta oil sands region (Canada) on aquatic benthic invertebrates: a case study with Chironomus riparius;Cardoso;Sci. Total Environ.,2024

5. Emerging plastic litter variants: a perspective on the latest global developments;Chowdhury;Sci. Total Environ.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3