Comparative analysis of machine learning and multi-criteria decision making techniques for landslide susceptibility mapping of Muzaffarabad district

Author:

Khalil Umer,Imtiaz Iqra,Aslam Bilal,Ullah Israr,Tariq Aqil,Qin Shujing

Abstract

Landslides are natural disasters deliberated as the most destructive among the others considered. Using the Muzaffarabad as a case study, this work compares the performance of three conventional Machine Learning (ML) techniques, namely Logistic Regression (LGR), Linear Regression (LR), Support Vector Machine (SVM), and two Multi-Criteria Decision Making (MCDM) techniques, namely Analytical Hierarchy Process (AHP) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) for the susceptibility mapping of landslides. Most of these techniques have been used in the region of Northern Pakistan before for the same purpose. However, this study for landslide susceptibility assessment compares the performance of various techniques and provides additional insights into the factors used by adopting multicollinearity analysis. Landslide-inducing factors considered in this research are lithology, slope, flow direction, fault lines, aspect, elevation, curvature, earthquakes, plan curvature, precipitation, profile curvature, Normalized Difference Water Index (NDWI), Normalized Difference Vegetation Index (NDVI), roads, and waterways. Results show that SVM performs better than LGR and LR among ML models. On the other hand, the performance of AHP was better than TOPSIS. All the models rank slope, precipitation, elevation, lithology, NDWI, and flow direction as the top three most imperative landslide-inducing factors. Results show 80% accuracy in Landslide Susceptibility Maps (LSMs) from ML techniques. The accuracy of the produced map from the AHP model is 80%, but for TOPSIS, it is less (78%). In disaster planning, the produced LSMs can significantly help the decision-makers, town planners, and local management take necessary measures to decrease the loss of life and assets.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3