Managing at source and at scale: The use of geomorphic river stories to support rehabilitation of Anthropocene riverscapes in the East Coast Region of Aotearoa New Zealand

Author:

Fuller Ian C.,Brierley Gary J.,Tunnicliffe Jon,Marden Mike,McCord Jacqui,Rosser Brenda,Hikuroa Dan,Harvey Khendra,Stevens Elliot,Thomas Megan

Abstract

Recently uplifted, highly erodible rocks, and recurrent high intensity storms, generate exceedingly high erosion and sedimentation rates in the East Coast Region (Tairāwhiti) of Aotearoa New Zealand. Despite the recent nature of the Anthropocene record in global terms (∼650 years since Māori arrival, 250 years of colonial impacts), human disturbance has profoundly altered evolutionary trajectories of river systems across the region. Here we document catchment-by-catchment variability in anthropogenic signature as geomorphic river stories for five catchments (Waiapu, Hikuwai, Waimatā, Waipaoa, Mōtū). We show how targeted, fit-for-purpose process-based rehabilitation programmes that manage at source and at scale are required to facilitate river recovery in each of these catchments. The largest rivers in the region, Waiapu and Waipaoa, comprise steep, highly dissected terrains that are subject to recurrent hillslope failures, including systemic shallow landslides, occasional deep-seated rotational slumps and earthflows. Localised sediment input from large (>10 ha) gully mass movement complexes overwhelms valley floors. Targeted revegetation programmes are required to reduce extreme sediment inputs from these sources. Although there are fewer gully complexes in the Hikuwai, multiple landslips supply vast volumes of fine-grained sediment that aggrade and are recurrently reworked along channel margins in lowland reaches. Waimatā has no gully complexes and a smaller number of landslips, but large areas are subject to sediment input from earthflows. The terrace-constrained flume-like nature of this system efficiently flushes materials ‘from the mountains to the sea’, recurrently reworking materials along channel banks in a similar manner to the lower Hikuwai. Systematic reforestation in the middle-upper catchment and revegetation of riparian corridors is required to reduce sedimentation rates in these catchments. In contrast, terraces buffer sediment delivery from hillslopes in the upper Mōtū catchment, where a bedrock gorge separates large sediment stores along upper reaches from the lower catchment. As reworking of valley floor sediments in response to bed incision and reworking (expansion) of channel margins is the primary contemporary sediment source in this system, bed control structures and revegetation of riparian corridors are required as part of targeted sediment management plans. We contend that geomorphic river stories provide a coherent platform for Anthropocene rehabilitation strategies that work with the character, behaviour and evolutionary trajectories of river systems. Although this generic lens can be applied anywhere in the world, we highlight particular meanings and implications in Aotearoa New Zealand where such thinking aligns directly with Māori values that respect the mana (authority), mauri (lifeforce) and ora (wellbeing) of each and every river.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3