A critical review of methods, principles and progress for estimating the gross primary productivity of terrestrial ecosystems

Author:

Liao Zhangze,Zhou Binghuang,Zhu Jingyu,Jia Hongyu,Fei Xuehai

Abstract

The gross primary productivity (GPP) of terrestrial ecosystems reflects the total amount of organic carbon assimilated by vegetation through photosynthesis per given unit of time and area, which represents the largest carbon flux in carbon budget and plays a fundamental part in the carbon cycle. However, challenges such as determining how to select appropriate methods to improve GPP estimation accuracy at the regional/global scale remain. Therefore, it is of great importance to comprehensively review the research progress on the methods for estimating the GPP of terrestrial ecosystems and to summarize their flaws, merits and application fields. In this study, we reviewed studies of GPP estimation at different spatiotemporal scales, and systematically reviewed the principles, formulas, representative methods (Ground observations, Model simulations, SIF based GPP, and NIRv based GPP) at different scales and models (Statistical/Ecological process/Machine learning/Light use efficiency models), as well as the advantages and limitations of each research method/models. A comprehensive comparison of GPP research methods was performed. We expect that this work will provide some straightforward references for researchers to further understand and to choose appropriate models for assessing forest ecosystem GPP according to the research objectives and area. Thus, critical and effective GPP estimation methods can be established for the terrestrial carbon cycle, carbon neutralization accounting and local carbon emission reduction policy formulation and implementation.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3