Attributions of emission-reduction and meteorological conditions to typical heavy pollution episodes in a cold metropolis, northeast China

Author:

Li Junfei,Sun Li,Yao Xin,Zang Shuying,Wang Jiao,Ma Dalong

Abstract

Heavy pollution episodes frequently occurred in winter in northeast China due to the multiple anthropogenic emissions coupled with adverse meteorological conditions, which increased the difficulty of environmental pollution control. To better enact strategies for mitigating air pollution in the post-pandemic era, daily pollutant concentration monitoring and meteorological data were used to evaluate the changes and meteorological factors of air pollutants before (2019) and during (2020) the lockdown in Harbin City, northeast China. Moreover, typical pollution episodes under COVID-19 lockdown were identified, and their emission sources, meteorology conditions, and regional pollution transportation were analyzed. The results showed significant decreases in NO2, PM10 and CO, while O3 increased, and no differences in PM2.5 and SO2 during the lockdown compared with non-lockdown periods. It indicated that reduced activities of transportation resulted in reductions of NO2 concentrations by 16%, and stationary emission sources were less affected. Correlation between PM2.5 and O3 tended to change from positive to negative as the threshold of PM2.5 = 90 μg m−3, with the main controlling factor changed from their common gaseous precursors to meteorological conditions (temperature <0°C and wind speed <2 m s−1). Pollution days were concentrated in the COVID-19 lockdown period with PM2.5 as the primary pollutant. SO2 dominant pollution and PM2.5 dominant pollution were distinguished from six sustained heavy pollution events. PM2.5 and SO2 played essential roles in SO2 dominant pollution, which derived from local emissions of coal combustion and firework discharge. PM2.5 dominant pollution might be chemical transformed from coal burning, vehicle exhaust, and other secondary precursors, which was affected and aggravated by CO, NO2, high relative humidity and low wind speed affected by local emission and long-distance transport.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3