Assessment of Soil Health Indicators Under the Influence of Nanocompounds and Bacillus spp. in Field Condition

Author:

Chaudhary Parul,Chaudhary Anuj,Bhatt Pankaj,Kumar Govind,Khatoon Hina,Rani Alka,Kumar Saurabh,Sharma Anita

Abstract

Agricultural yield of major crops is low due to the injudicious use of chemical fertilizers that affects soil fertility and biodiversity severely and thereby affecting plant growth. Soil health is regulated by various factors such as physicochemical properties of the soil, availability of micro/macronutrients, soil health indicator enzymes and microbial diversity which are essential for agriculture productivity. Thus, it is required to draw attention towards an eco-friendly approach that protects the beneficial microbial population of soil. Application of different bioinoculants and agriusable nanocompounds has been reported to enhance soil quality with increased nutrient status and beneficial bacterial population, but additive effects of combined treatments on soil microbial population are largely unknown. The present study investigated the impact of nanozeolite and nanochitosan along with two Bacillus spp. on rhizospheric microbial flora and indicator enzymes to signify soil health under field conditions on maize. Soil health was ascertained by evaluating physicochemical analysis; total bacterial counts including N, P, and K solubilizing bacteria; and soil health indicator enzymes like fluorescein diacetate hydrolysis, alkaline phosphatase, β-glucosidase, dehydrogenase, amylase, and arylesterase. Change in copy number of 16S rRNA as a marker gene was used to quantify the bacterial population using quantitative PCR (qPCR) in different treatments. Our study revealed that nanocompounds with Bacillus spp. significantly (p < 0.05) enhanced total microbial count (16.89%), NPK solubilizing bacteria (46%, 41.37%, and 57.14%), and the level of soil health indicator enzymes up to twofold over control after 20, 40, and 60 days of the experiment. qPCR analysis showed a higher copy number of the 16S rRNA gene in treated samples, which also indicates a positive impact on soil bacterial population. This study presents a valuable approach to improve soil quality in combined treatments of nanocompounds and bioinoculants which can be used as a good alternative to chemical fertilizers for sustainable agriculture.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3