A Landscape-Level Assessment of Restoration Resource Allocation for the Eastern Monarch Butterfly

Author:

Solis-Sosa Rodrigo,Mooers Arne Ø.,Larrivée Maxim,Cox Sean,Semeniuk Christina A. D.

Abstract

The Monarch butterfly eastern population (Danaus plexippus) is in decline primarily due to habitat loss. Current habitat restoration programs focus on re-establishing milkweed, the primary food resource for Monarch caterpillars, in the central United States of America. However, individual components of the Monarch life cycle function as part of an integrated whole. Here we develop the MOBU-SDyM, a migration-wide systems dynamics model of the Monarch butterfly migratory cycle to explore alternative management strategies’ impacts. Our model offers several advances over previous efforts, considering complex variables such as dynamic temperature-dependent developmental times, dynamic habitat availability, and weather-related mortality across the entire range. We first explored whether the predominant focus of milkweed restoration in the mid-range of the Monarch’s migration could be overestimating the Monarch’s actual habitat requirements. Second, we examined the robustness of using the recommended 1.2–1.6 billion milkweed stems as a policy objective when accounting for factors such as droughts, changes in temperature, and the stems’ effective usability by the Monarchs. Third, we used the model to estimate the number and distribution of stems across the northern, central, and southern regions of the breeding range needed to reach a self-sustainable long-term Monarch population of six overwintering hectares. Our analysis revealed that concentrating milkweed growth in the central region increases the size of the overwintering colonies more so than equivalent growth in the south region, with growth in the northern region having a negligible effect. However, even though simulating an increase in milkweed stems in the south did not play a key role in increasing the size of the overwintering colonies, it plays a paramount role in keeping the population above a critically small size. Abiotic factors considerably influenced the actual number of stems needed, but, in general, our estimates of required stems were 43–91% larger than the number of stems currently set as a restoration target: our optimal allocation efforts were 7.35, 92, and 0.15% to the south, central, and northern regions, respectively. Systems dynamics’ analytical and computational strengths provided us with new avenues to investigate the Monarch’s migration as a complex biological system and to contribute to more robust restoration policies for this unique species.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference94 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3