Maximizing hydropower station safety against earthquake through extreme learning machine-enabled shear waves velocity prediction

Author:

Song Tao,Guan Di,Wang Zhen,Ghorbani Hamzeh

Abstract

Hydropower stations are important infrastructures for generating clean energy. However, they are vulnerable to natural disasters such as earthquakes, which can cause severe damage and even lead to catastrophic failures. Therefore, it is essential to develop effective strategies for maximizing hydropower station safety against earthquakes. To evaluate the potential shear rate of surrounding rock layers, the shear wave velocity (Vs) parameter can be used as a useful tool. This parameter helps to determine the velocity at which shear waves travel through the rock layers, which can indicate their stability and susceptibility to earthquakes. This study will investigate the significance of the Vs parameter in evaluating the potential shear rate of rock layers surrounding hydropower stations and how it can be used to ensure their safety and efficiency in earthquake-prone regions. Furthermore, a novel approach is proposed in this research, which involves using extreme learning machine (ELM) technology to predict Vs and enhance the seismic safety of hydropower stations. The ELM model predicts the Vs of the soil layers around the hydropower station, a crucial factor in determining the structure’s seismic response. The predicted Vs is then used to assess seismic hazard and design appropriate safety measures. The ML-ELM model outperformed both the ELM and empirical models, with an RMSE of 0.0432 μs/ft and R2 of 0.9954, as well as fewer outlier data predictions. This approach shows promise for predicting Vs in similar environments, and future research could explore its effectiveness in other datasets and practical applications.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3