Erosion-reducing potential of Salix psammophila roots in the water–wind crisscrossed erosion region of the Chinese Loess Plateau: A simulated investigation

Author:

Zhang Zheng,Yu Weijie,Li Qiang,Sun Hui,Feng Zhidao,Zou Jiatong

Abstract

Laboratory-simulated experiments under a one-way wind erosion–rain erosion sequence were conducted to investigate the effect of S. psammophila roots on wind and water erosion processes and quantify its erosion-reducing potential. With the collected soil of sandy loam and planted shrub of S. psammophila, 16 soil boxes including bare and root-permeated soils were arranged in March 2017 and conducted in August 2017. With the wind speeds of 11 and 14 m s−1 and rainfall intensities of 60 and 100 mm h−1, two levels of interaction (11 m s−1 × 60 mm h−1 and 14 m s−1 × 100 mm h−1) were designed. The particle-size composition and sediment transport flux were examined in the former wind tunnel experiments, and the runoff hydrodynamic parameters and runoff and water erosion rates were determined in the following rainfall tests. The sediment reduction effect by roots (%) was used to quantify the erosion-reducing potential of roots. The results demonstrated that in the former wind tunnel experiments, compared with the bare soils, the root-permeated soils showed a slight coarsening of surface soil and had 18.03% and 35.71% less sediment transport flux at wind speeds of 11 and 14 m s−1, respectively. In the following rainfall tests, S. psammophila roots weakened the hydrodynamic intensity of overland flow and decreased runoff and water erosion rates by 13.34%, 30.70% and 4.44%, 43.72% at rainfall intensities of 60 and 100 mm h−1, respectively. Different from the water erosion process of bare soils, which showed an increased fluctuated trend, the root-permeated soils presented a steady increase in the early stage of rainfall and then a decrease-stable trend at the mid and end of rainfall. In the wind tunnel–rainfall experiments, the sediment reduction effect by Salix psammophila roots showed 24.37% and 39.72% at levels of 11 m s−1 × 60 mm h−1 and 14 m s−1 × 100 mm h−1, respectively. This kind of study may provide more insights into understanding ecological impacts of sandy vegetation construction on the water–wind crisscrossed erosion region of the Chinese Loess Plateau and also sandy land.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3