Biochar-Swine Manure Impact on Soil Nutrients and Carbon Under Controlled Leaching Experiment Using a Midwestern Mollisols

Author:

Banik Chumki,Koziel Jacek A.,De Mriganka,Bonds Darcy,Chen Baitong,Singh Asheesh,Licht Mark A.

Abstract

Biochar application to the soil can improve soil quality and nutrient leaching loss from swine manure adapted soils. Our working hypothesis was that the biochar-incubated with manure could be a better soil amendment than conventional manure application. The manure-biochar application to the soil would decrease nutrient leaching from manure and increase plant-available nutrients. The study objectives were to 1) assess the physicochemical properties of the manure-biochar mixture after lab incubation and 2) evaluate the impact of biochar-treated swine manure on soil total C, N, and other major and minor nutrients in comparison to conventional manure application to soil. Three biochars 1) neutral pH red-oak (RO), 2) highly alkaline autothermal corn (Zea mays) stover (HAP), and 3) mild acidic Fe-treated autothermal corn stover (HAPE) were incubated with swine manure for a month. The biochar-manure mixture was applied in triplicate to soil columns with an application rate determined by the P2O5-P content in manure or manure-biochar mixtures after the incubation. The ammonium (NH4+), nitrate (NO3), and reactive P concentrations in soil column leachates were recorded for eight leaching events. Soil properties and plant-available nutrients were compared between treatments and control manure and soil. Manure-(HAP&HAPE) biochar treatments significantly increased soil organic matter (OM), and all biochar-manure mixture increased (numerically) soil total C, N, and improved soil bulk density. Concentrations of NH4+ and NO3 significantly increased in MHAPE column leachates during this 4-week study and the KCl-extractable NH4+ and NO3 in the soil at the end of the experiment. A significant reduction in soil Mehlich3 Cu was also observed for the manure-HAPE mixture compared with the manure control. The manure-red oak biochar significantly increased the soil Mn availability than other manure-biochar treatments or manure control. Overall, the manure-biochar incubation enabled biochar to stabilize the C and several nutrients from manure. The subsequent manure-biochar mixture application to soil improved soil quality and plant nutrient availability compared to conventional manure application. This proof-of-the-concept study suggests that biochars could be used to solve both environmental and agronomic challenges and further improve the sustainability of animal and crop production agriculture.

Funder

Leopold Center for Sustainable Agriculture, Iowa State University

Iowa State University

Iowa Agriculture and Home Economics Experiment Station, Iowa State University

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3