A micro- and macro-scale look at the biochemical methanogenic potential of the organic fraction of municipal solid waste generated in a large city of a developing country

Author:

Ibarra-Esparza Fernanda E.,Verduzco Garibay Marycarmen,Lara-Topete Gary Ossmar,González-López Martín Esteban,Orozco-Nunnelly Danielle A.,Aguilar-Juárez Oscar,Senés-Guerrero Carolina,Gradilla-Hernández Misael Sebastián

Abstract

The management of municipal solid waste (MSW) is a complex and expensive task. This is especially the case in developing countries, where waste generation rates are continuously increasing and where current MSW management strategies are focused on inadequate practices, such as landfilling and incineration, which result in numerous health and environmental problems. The anaerobic digestion (AD) of MSW has been implemented worldwide as a solution to decrease the amount of waste ending up in landfills. This process allows for the recovery of energy from the organic fraction of MSW (OFMSW) in the form of biogas, which is largely composed of methane. Therefore, the goal of the present study was to evaluate the biochemical methane potential (BMP) of the OFMSW generated within different socioeconomic strata of the Metropolitan Area of Guadalajara (MAG), Mexico. From a microscale perspective, the microbial communities within the experimental AD system were analyzed using high-throughput sequencing of the 16S rRNA gene to assess the relationship between these communities and the biogas composition. This microbial identification revealed a typical AD composition consisting of the following six phyla: Actinobacteria, Bacteroidetes, Chloroflexi, Euryarchaeota, Firmicutes, and Proteobacteria. Furthermore, through the identification of Methanobacterium and Methanosaeta, two methanogenesis pathways (hydrogenotrophic and acetoclastic) were pinpointed. From a macroscale perspective, a multi-stage Gompertz kinetic model was used to describe cumulative biogas production. This model considered the complex nature of the OFMSW substrate in order to estimate the potential level of biogas production in the MAG using a weighted average that was based on the size of the population in each socioeconomic stratum evaluated (732.8 mL⋅g−1 VS). This novel contribution to the literature provides an estimation of the potential economic, energetic, and environmental benefits of treating the OFMSW produced in the MAG through AD. Through this approach, an estimated 8.5 MWh·year−1 of electrical power could be produced, translating into 1.13 million USD of yearly revenue and resulting in reduced GHG emissions (10,519 tonne CO2eq⋅year−1).

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3