Statistical evaluation of the similarity of characteristics in springs of the California Desert, United States

Author:

Love Adam H.,Zdon Andy,Fraga Naomi S.,Cohen Brian,Palacios Mejia Maura,Maxwell Rachel,Parker Sophie S.

Abstract

Desert ecosystems are an environment of climatic extremes, to which many forms of life have adapted. These systems are characterized by scarce water and often sparsely vegetated lands where ecological adaptation to arid conditions has its underpinnings in the universal dependency on water to support life. Understanding the ecohydrological similarity of springs in water-limited areas requires integration of multiple lines of evidence from diverse disciplines. A unique dataset of hydrological and ecological characteristics of Mojave and Sonoran Desert spring ecosystems in California has been developed, incorporating a wide range of spring conditions that enables a broad evaluation of similarity in ecohydrological characteristics across springs in the region. The lack of observed correlation between hydrologic and ecological parameters suggests that the springs in the California Desert each represent a somewhat unique ecosystem that has developed in relative isolation from the other springs. These results imply that because of the uniqueness of these desert ecosystems the idea of mitigation compensation or mitigation offset via replacement or substitution can never truly be achieved if/when these spring areas are impacted. Any ecosystem used as a replacement or substitution could not reasonably be expected to be similar in terms of the associated hydrologic and ecologic conditions to the ecosystem lost. While such offsets can represent a coarser view of replacements or substitution, the more specific conditions that support endemic and water-dependent biodiversity cannot be easily replaced or substituted.

Funder

Nature Conservancy

U.S. Bureau of Land Management

Department of Water Resources

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3