Diverse portfolios: Investing in tributaries for restoration of large river fishes in the Anthropocene

Author:

Bouska Kristen L.,Healy Brian D.,Moore Michael J.,Dunn Corey G.,Spurgeon Jonathan J.,Paukert Craig P.

Abstract

Rehabilitation of large Anthropocene rivers requires engagement of diverse stakeholders across a broad range of sociopolitical boundaries. Competing objectives often constrain options for ecological restoration of large rivers whereas fewer competing objectives may exist in a subset of tributaries. Further, tributaries contribute toward building a “portfolio” of river ecosystem assets through physical and biological processes that may present opportunities to enhance the resilience of large river fishes. Our goal is to review roles of tributaries in enhancing mainstem large river fish populations. We present case histories from two greatly altered and distinct large-river tributary systems that highlight how tributaries contribute four portfolio assets to support large-river fish populations: 1) habitat diversity, 2) connectivity, 3) ecological asynchrony, and 4) density-dependent processes. Finally, we identify future research directions to advance our understanding of tributary roles and inform conservation actions. In the Missouri River United States, we focus on conservation efforts for the state endangered lake sturgeon, which inhabits large rivers and tributaries in the Midwest and Eastern United States. In the Colorado River, Grand Canyon United States, we focus on conservation efforts for recovery of the federally threatened humpback chub. In the Missouri River, habitat diversity focused on physical habitats such as substrate for reproduction, and deep-water habitats for refuge, whereas augmenting habitat diversity for Colorado River fishes focused on managing populations in tributaries with minimally impaired thermal and flow regimes. Connectivity enhancements in the Missouri River focused on increasing habitat accessibility that may require removal of physical structures like low-head dams; whereas in the Colorado River, the lack of connectivity may benefit native fishes as the disconnection provides refuge from non-native fish predation. Hydrologic variability among tributaries was present in both systems, likely underscoring ecological asynchrony. These case studies also described density dependent processes that could influence success of restoration actions. Although actions to restore populations varied by river system, these examples show that these four portfolio assets can help guide restoration activities across a diverse range of mainstem rivers and their tributaries. Using these assets as a guide, we suggest these can be transferable to other large river-tributary systems.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3