The impact of biomass burning emissions on aerosol concentrations and depositions in the northern South China Sea region

Author:

Li Jiawei,Zhang Zhisheng,Tao Jun,Pan Yuepeng,Luo Li,Han Zhiwei

Abstract

The impact of biomass burning (BB) emissions on concentrations and depositions of major aerosol components in the northern South China Sea (NSCS) region (105∼115°E and 15∼21°N) from December 2020 to April 2021 has been investigated using the WRF-chem model (weather research and forecasting model coupled with chemistry) in combination with aerosol composition measurement at a mountain site in the Hainan Island of China. Model comparisons with observations in Hainan demonstrated the effectiveness of WRF-chem in simulating aerosol components (PM2.5, black carbon (BC), organic matter (OM), sulfate, nitrate, and ammonium) in the NSCS region. The influences of BB emissions were significant on near-surface PM2.5, BC, and OM but nearly negligible on secondary inorganic components (i.e., sulfate, nitrate, and ammonium). The NSCS regional and period mean PM2.5, BC, and OM concentrations were 17.2 μg/m3, 0.65 μg/m3, and 6.7 μg/m3, in which 20%, 13%, and 35%, respectively, were from BB emissions. The mean PM2.5, BC, and OM deposition fluxes were 73.8 mg/m2/month, 2.9 mg/m2/month, and 29.3 mg/m2/month, respectively, and 22%, 15%, and 38% of these depositions were from BB emissions. Dry deposition dominated the removal of aerosols. For both aerosol concentrations and depositions, the influences of BB emissions exhibited evidently larger contributions in spring (March and April) than those in winter (December to February). Most of the BB emissions were from mainland Southeast Asia (MSEA), in terms of period mean, 79%, 72%, and 81% of the BB PM2.5, BB BC, and BB OM concentrations and 82%, 77%, and 83% of their depositions in the NSCS region were attributed to the MSEA region. The results of this study suggested that BB emissions have strong implications for air quality and biogeochemical cycle of the NSCS region.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3