Occurrence and risk assessment of endocrine-disrupting chemicals in wastewater treatment plants in the Chaohu Lake Basin

Author:

Han Yalin,Qi Cuicui,Niu Ziniu,Li Nini,Tang Jie

Abstract

Introduction: Endocrine-disrupting chemicals (EDCs) in effluent and residual sludge from wastewater treatment plants (WWTPs) pose significant environmental and human health risks due to their persistence, bioaccumulation, and difficulty in detection and degradation. This study investigates the environmental exposure and risks associated with EDCs in effluent and sludge from four WWTPs: Tangxi River (TXH), Zipeng Mountain (ZPS), Lianxi (LX), and Wang Xiaoying (WXY).Methods: Environmental exposure indexes of EDCs were assessed in the effluent and sludge of the four WWTPs across four seasons (spring, summer, autumn, and winter) from October 2017 to October 2018. Detection rates of various pollutants, their seasonal and spatial characteristics, and removal rates were analyzed. Positive matrix factorization (PMF) was used for source analysis under influent data, and an ecological risk assessment was conducted using the risk quotient (RQ) method.Results: The study found 4-n-nonylphenol (NP) and di-2-ethylhexyl phthalate (DEHP) had 100% detection rates in the effluent of all four WWTPs, while only DEHP showed a 100% detection rate in the sludge. Bisphenol A (BPA) exhibited the highest concentration in the TXH effluent during autumn. Benzo(a)pyrene (B(a)P) was detected only in the sludge during spring and summer and in the effluent of TXH and WXY. PMF source analysis indicated industrial wastewater discharge as the primary source of pollutants. Ecological risk assessment revealed a high RQ for estriol (E3) in TXH effluent during autumn, and DEHP presented a potential carcinogenic risk through drinking water.Discussion: The findings highlight significant seasonal and spatial variations in EDC concentrations and removal rates across the WWTPs. The persistent presence of DEHP and the high-risk levels of E3 in specific seasons underscore the need for improved treatment processes and stricter industrial discharge regulations to mitigate EDC-related risks. Further research is recommended to explore advanced detection and degradation techniques for EDCs in WWTPs.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3