Distribution of volatile organic compounds (VOCs) in the urban atmosphere of Hangzhou, East China: Temporal variation, source attribution, and impact on the secondary formations of ozone and aerosol

Author:

Wang Xin,Han Yu,Tu Xiang,Shen Jiandong,Zhang Baojun,Fu Hongbo

Abstract

Volatile organic compounds (VOCs) significantly influence air quality, atmospheric chemistry, and human health. An observational study was performed at the urban site of Hangzhou, China, to analyze VOC characteristics, sources, chemical reactivities, and their impact on ozone (O3) and secondary organic aerosol (SOA) formation throughout the year 2021. During the observation period, alkanes (40.13%) emerging as the predominant VOC species. Seasonal variation in VOCs followed the order of winter (26.49 ppb) > spring (23.63 ppb) > summer (23.62 ppb) > autumn (20.47 ppb). The results of positive matrix factorization (PMF) revealed that solvent usage, combustion, and vehicle exhaust were the dominant VOC sources. Regional transport from nearby provinces also significantly contributed to VOC levels. These contributions varied seasonally, with southeastern air masses prevailing in both spring and autumn, eastern air masses impacting summer, and northwestern air masses affecting winter. The campaign-averaged value of total hydroxyl (OH) radicals was 19.08 s−1. NO2 accounted for the most significant contribution to the overall OH reactivity (39.11%), followed by VOCs (28.72%). Notable seasonal fluctuations in OH reactivity followed the order of winter (24.20 s−1) > spring (19.22 s−1) > autumn (18.07 s−1) > summer (14.86 s−1). The average ozone formation potential (OFP) for the measured VOCs was calculated as 75.54 ppb, with alkenes being the dominant contributor. The highest value was observed in spring (83.05 ppb), the lowest value was in autumn (60.43 ppb). The SOA formation potential, mainly contributed by the aromatics, was averaged as 2.92 μg m−3. Additionally, the top four SOA-contributing species across four seasons were toluene, benzene, m-xylene, and ethylbenzene. VOC–PM2.5 sensitivity analysis showed that VOCs exhibited higher sensitivity to PM2.5 on clean level (PM2.5 < 35 μg m−3) than on level with heavy pollution. Alkenes, oxygenated volatile organic compounds (OVOCs) and aromatics played significant roles in the transformations of O3 and SOA in Hangzhou. Therefore, controlling the concentrations of these species is crucial for reducing complex atmospheric pollution in the region. Overall, this study compiles scientific evidence on pollution sources in Hangzhou, providing the government with valuable information.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3