Sustainable assessment and carbon footprint analysis of polysaccharide biopolymer-amended soft soil as an alternate material to canal lining

Author:

Rasheed Romana Mariyam,Moghal Arif Ali Baig,Rambabu Sathyanarayanan,Almajed Abdullah

Abstract

Kuttanad region in Kerala, India, is a place that predominantly consists of soft soil formations with low shear strength and low water resistance rendering them problematic for construction purposes. Pavements constructed on such soft deposits have been subjected to structural rutting and the high erodibility of the in-situ soil necessitates the need to use suitable ground improvement techniques. The present environmental scenario demands the implementation of sustainable techniques for ground rejuvenation and effective stabilizers for enhancing engineering properties. This study investigates the amelioration of Kuttanad soft soil using chitosan as a soil amendment to improve its durability and erodibility characteristics. The untreated and chitosan-treated samples were exposed to 5 h of wetting cycle followed by 43 h of drying cycles until their failure. The unconfined compressive strength (UCS) of samples prepared with different dosages (0.5, 2, 4%) and cured for 14, 28, 60, and 90 days was evaluated at the onset and after each drying cycle to measure their durability index. Kuttanad soil was amended with 2% and cured for 90 days withstood five cycles with a UCS of more than 1,000 kPa. The drip erosion tests were used to check the erodibility performance for the aforementioned different dosages and curing periods. The 2% and 4% chitosan amended samples resisted the entire test duration of 10 min indicating the highest water erosion resistance. The findings of the current study evaluated through durability and erosion tests reinforced the effectiveness of chitosan as an effective biopolymer for soft soils subjected to constant water attack and can be easily implemented in places with such vulnerability. A typical earthen canal lining amended with chitosan reduced the carbon emissions by 8.74 and 7.44 times compared to conventional amendments like lime and cement in Carbon Footprint Analysis.

Funder

King Saud University

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3