Variations of soil properties and soil surface loss after fire in rotational shifting cultivation in Northern Thailand

Author:

Arunrat Noppol,Sereenonchai Sukanya,Kongsurakan Praeploy,Yuttitham Monthira,Hatano Ryusuke

Abstract

Since fire is still necessary for rotational shifting cultivation (RSC), the vertical distribution and slope effect on soil properties and soil surface loss after a fire remain unclear. To address these research gaps, the study aims to achieve the following objectives: 1) investigating post-fire soil properties and soil surface loss in RSC, and 2) assessing the vertical distribution and slope effect on soil properties and soil surface loss in RSC. Soil samples were collected from two stages of RSC: 6 years (RSC-6Y) and 12 years (RSC-12Y), located in Chiang Mai Province, Northern Thailand. A continuous 15-year left fallow field (CF-15Y) was used as the reference site. Soil samples were collected from the upper, middle, and lower slopes at depths of 0–5, 5–10, 10–20, and 20–30 cm at five different time points: before burning, 5 min, 3 months, 6 months, and 9 months post-fire. The results indicated that older fallow fields had a tendency to accumulate more soil organic carbon (SOC) and soil organic nitrogen (STN). The color of the ash was altered by the fire, resulting in dark reddish-brown ash with higher levels of pH, organic matter (OM), electrical conductivity, total nitrogen, and soil nutrients when compared to gray and white ashes. The combustion of OM during the fire was found to release soil nutrients, which could explain the increase after burning. SOC stock increased at deeper layers (5–10 cm) with higher values than pre-burning levels, especially at lower slope positions, while STN stock decreased at the surface soil post-fire but increased in deeper layers at all slope positions. The average soil surface loss ranged from 1.6 to 3.1 cm, with the highest loss observed 9 months after the fire (during the rainy season) at the upper slope. In terms of the impact of slope on soil properties following the fire event, our study indicated a significant correlation between lower slopes and variables including SOC, STN, electrical conductivity, nitrate–nitrogen (NO3-N), ammonium nitrogen (NH4-N), exchangeable calcium, and exchangeable magnesium. Further study is required to investigate and develop appropriate post-fire management strategies to effectively reduce nutrient loss and minimize soil surface erosion.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3