Renewable energy strategy analysis in relation to environmental pollution for BRICS, G7, and EU countries by using a machine learning framework and panel data analysis

Author:

Cristea Dragos Sebastian,Zamfir Cristina Gabriela,Simionov Ira Adeline,Fortea Costinela,Ionescu Romeo Victor,Zlati Monica Laura,Antohi Valentin Marian,Munteanu Dan,Petrea S. M.

Abstract

The present research uses machine learning, panel data and time series prediction and forecasting techniques to establish a framework between a series of renewable energy and environmental pollution parameters, considering data for BRICS, G7, and EU countries, which can serve as a tool for optimizing the policy strategy in the sustainable energy production sector. The results indicates that XGBoost model for predicting the renewable energy production capacity reveals the highest feature importance among independent variables is associated with the gas consumption parameter in the case of G7, oil consumption for EU block and GHG emissions for BRICS, respectively. Furthermore, the generalized additive model (GAM) predictions for the EU block reveal the scenario of relatively constant renewable energy capacity if gas consumption increases, while oil consumption increases determine an increase in renewable energy capacity until a kick point, followed by a decrease. The GAM models for G7 revealed the scenario of an upward trend of renewable energy production capacity, as gas consumption increases and renewable energy production capacity decreases while oil consumption increases. In the case of the BRICS geopolitical block, the prediction scenario reveals that, in time, an increase in gas consumption generates an increase in renewable energy production capacity. The PCA emphasizes that renewable energy production capacity and GHG, respectively CO2 emissions, are highly correlated and are integrated into the first component, which explains more than 60% of the variance. The resulting models represent a good prediction capacity and reveal specific peculiarities for each analyzed geopolitical block. The prediction models conclude that the EU economic growth scenario is based on fossil fuel energy sources during the first development stage, followed by a shift to renewable energy sources once it reaches a kick point, during the second development stage. The decrease in renewable energy production capacity when oil consumption increases indicates that fossil fuels are in trend within the G7 economy. In the case of BRICS, it is assumed that gas consumption appears because of increasing the industrial capacity, followed by the increase of economic sustainability, respectively. In addition, the generalized additive models emphasize evolution scenarios with different peculiarities, specific for each analyzed geopolitical block.

Funder

Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii

Universitatea ‘Dunarea de Jos’ Galati

European Regional Development Fund

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3