Multiple rearrangements and low inter- and intra-species mitogenome sequence variation in the Heterobasidion annosum s.l. species complex

Author:

Himmelstrand Kajsa,Brandström Durling Mikael,Karlsson Magnus,Stenlid Jan,Olson Åke

Abstract

IntroductionMitochondria are essential organelles in the eukaryotic cells and responsible for the energy production but are also involved in many other functions including virulence of some fungal species. Although the evolution of fungal mitogenomes have been studied at some taxonomic levels there are still many things to be learned from studies of closely related species.MethodsIn this study, we have analyzed 60 mitogenomes in the five species of the Heterobasidion annosum sensu lato complex that all are necrotrophic pathogens on conifers.Results and DiscussionCompared to other fungal genera the genomic and genetic variation between and within species in the complex was low except for multiple rearrangements. Several translocations of large blocks with core genes have occurred between the five species and rearrangements were frequent in intergenic areas. Mitogenome lengths ranged between 108 878 to 116 176 bp, mostly as a result of intron variation. There was a high degree of homology of introns, homing endonuclease genes, and intergenic ORFs among the five Heterobasidion species. Three intergenic ORFs with unknown function (uORF6, uORF8 and uORF9) were found in all five species and was located in conserved synteny blocks. A 13 bp long GC-containing self-complementary palindrome was discovered in many places in the five species that were optional in presence/absence. The within species variation is very low, among 48 H. parviporum mitogenomes, there was only one single intron exchange, and SNP frequency was 0.28% and indel frequency 0.043%. The overall low variation in the Heterobasidion annosum sensu lato complex suggests a slow evolution of the mitogenome.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3