A revolving algae biofilm based photosynthetic microbial fuel cell for simultaneous energy recovery, pollutants removal, and algae production

Author:

Zhang Huichao,Yan Qian,An Zhongyi,Wen Zhiyou

Abstract

Photosynthetic microbial fuel cell (PMFC) based on algal cathode can integrate of wastewater treatment with microalgal biomass production. However, both the traditional suspended algae and the immobilized algae cathode systems have the problems of high cost caused by Pt catalyst and ion-exchange membrane. In this work, a new equipment for membrane-free PMFC is reported based on the optimization of the most expensive MFC components: the separator and the cathode. Using a revolving algae-bacteria biofilm cathode in a photosynthetic membrane-free microbial fuel cell (RAB-MFC) can obtain pollutants removal and algal biomass production as well as electrons generation. The highest chemical oxygen demand (COD) removal rates of the anode and cathode chambers reached 93.5 ± 2.6% and 95.8% ± 0.8%, respectively. The ammonia removal efficiency in anode and cathode chambers was 91.1 ± 1.3% and 98.0 ± 0.6%, respectively, corresponding to an ammonia removal rate of 0.92 ± 0.02 mg/L/h. The maximum current density and power density were 136.1 mA/m2 and 33.1 mW/m2. The average biomass production of algae biofilm was higher than 30 g/m2. The 18S rDNA sequencing analysis the eukaryotic community and revealed high operational taxonomic units (OTUs) of Chlorophyta (44.43%) was dominant phyla with low COD level, while Ciliophora (54.36%) replaced Chlorophyta as the dominant phyla when COD increased. 16S rDNA high-throughput sequencing revealed that biofilms on the cathode contained a variety of prokaryote taxa, including Proteobacteria, Bacteroidota, Firmicutes, while there was only 0.23–0.26% photosynthesizing prokaryote found in the cathode biofilm. Collectively, this work demonstrated that RAB can be used as a bio-cathode in PMFC for pollutants removal from wastewater as well as electricity generation.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3