Microbial landscape of cooked meat products: evaluating quality and safety in vacuum-packaged sausages using culture-dependent and culture-independent methods over 1 year in a sustainable food chain

Author:

Lemos Junior Wilson José Fernandes,Marques Costa Lucas,Alberto Guerra Carlos,Sales de Oliveira Vanessa,Gava Barreto Angela,Alves de Oliveira Fabiano,Paula Breno Pereira de,Esmerino Erick Almeida,Corich Viviana,Giacomini Alessio,Guerra André Fioravante

Abstract

Over the last few decades, advancements in process safety and quality methods have been significantly improved, yet new challenges continue to emerge in the sustainable food supply chain. This study aimed to investigate some physicochemical and microbiological parameters impacting meat products, particularly cooked sausages, within a sustainable supply chain, focusing on quality, spoilage populations, and syneresis formation under vacuum conditions. A comprehensive analysis was conducted on 355 samples collected over four seasons using high-throughput sequencing (16S/ITS) and microbiological and physicochemical [pH and water activity (aw)] assessments. The microbial growth predictor MicroLab_ShelfLife was employed, and multiple factor analysis (MFA) and agglomerative hierarchical clustering (AHC) were utilized to understand how these variables influence the microbiome resilience of these products. Lactic and acetic acids were correlated with the microbiome of the sausages and the liquid coating covering them using metagenomic analyses. The study highlighted that 52% of the evaluated meat industries in southeastern Brazil are implementing effective protocols for sustainable chain production. The results indicated that the durability of vacuum-packaged cooked sausages was primarily influenced by storage temperature (RV coefficient of 0.906), initial microbial load (0.755), and aw (0.624). Average microbial counts were 4.30 log cfu/g (initial), 4.61 (7°C/4 days), 4.90 (7°C/8 days), 6.06 (36°C/4 days), and 6.79 (36°C/8 days). Seasonal durability analysis revealed that winter had the highest average durability of 45.58 days, while summer had the lowest at 26.33 days. Yeast populations, including Trichosporon sp. and Candida sp., were identified as key genera influencing spoilage dynamics. In addition, Bacillus species emerged as dominant spoilage microorganisms, highlighting the need for new critical controls. This study demonstrates the impact of metagenomic approaches, including ITS and 16S amplicon sequencing, in revealing microbial community dynamics, storage temperature, and aw, which are essential for developing targeted interventions to enhance food safety and quality sustainably.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3