Fungal Diversity in the Soil of the Oxytropis glacialis Root System on the Qinghai-Tibet Plateau

Author:

Cao Peng-xi,Liu Yixuan,Ma Hong-mei,Zhao Ning,Chen Shu-ting,Xu Guo-qi,Liu Xing

Abstract

Because of swainonine-producing endophytic fungal, Oxytropis glacialis is one of the main poisonous weeds in the alpine grassland and desert grassland of the Qinghai-Tibet Plateau (QTP). It has a severe impact on grassland degradation on the QTP. In this manuscript, the Internally Transcribed Spacer (ITS) region of fungal communities in the soil of the O. glacialis root system was sequenced by high-throughput sequencing and analyzed by bioinformatics methods. The physical and chemical properties of the soil samples were analyzed in combination with the fungal diversity and its relationship with the soil physical and chemical factors. The results showed that the soil fungal community in the O. glacialis root system are rich in diversity in different ecological environments and are most affected by the soil pH value and organic matter. The swainonine-producing fungal Embellisia oxytropis was first detected in the soil of the O. glacialis root system. This finding provides data to support the next step in demonstrating the horizontal spread of swainone-producing fungal from O. glacialis to soil. In addition, a stable network of core flora has a facilitating effect on the formation of O. glacialis as a dominant species in alpine ecosystems.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3