Flooding Causes Dramatic Compositional Shifts and Depletion of Putative Beneficial Bacteria on the Spring Wheat Microbiota

Author:

Francioli Davide,Cid Geeisy,Kanukollu Saranya,Ulrich Andreas,Hajirezaei Mohammad-Reza,Kolb Steffen

Abstract

Flooding affects both above- and below-ground ecosystem processes, and it represents a substantial threat for crop and cereal productivity under climate change. Plant-associated microbiota play a crucial role in plant growth and fitness, but we still have a limited understanding of the response of the crop-microbiota complex under extreme weather events, such as flooding. Soil microbes are highly sensitive to abiotic disturbance, and shifts in microbial community composition, structure and functions are expected when soil conditions are altered due to flooding events (e.g., anoxia, pH alteration, changes in nutrient concentration). Here, we established a pot experiment to determine the effects of flooding stress on the spring wheat-microbiota complex. Since plant phenology could be an important factor in the response to hydrological stress, flooding was induced only once and at different plant growth stages (PGSs), such as tillering, booting and flowering. After each flooding event, we measured in the control and flooded pots several edaphic and plant properties and characterized the bacterial community associated to the rhizosphere and roots of wheat plant using a metabarcoding approach. In our study, flooding caused a significant reduction in plant development and we observed dramatic shifts in bacterial community composition at each PGS in which the hydrological stress was induced. However, a more pronounced disruption in community assembly was always shown in younger plants. Generally, flooding caused a (i) significant increase of bacterial taxa with anaerobic respiratory capabilities, such as members of Firmicutes and Desulfobacterota, (ii) a significant reduction in Actinobacteria and Proteobacteria, (iii) depletion of several putative plant-beneficial taxa, and (iv) increases of the abundance of potential detrimental bacteria. These significant differences in community composition between flooded and control samples were correlated with changes in soil conditions and plant properties caused by the hydrological stress, with pH and total N as the soil, and S, Na, Mn, and Ca concentrations as the root properties most influencing microbial assemblage in the wheat mircobiota under flooding stress. Collectively, our findings demonstrated the role of flooding on restructuring the spring wheat microbiota, and highlighted the detrimental effect of this hydrological stress on plant fitness and performance.

Funder

Leibniz-Gemeinschaft

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3