Analysis of microbial diversity and community structure of rhizosphere soil of Cistanche salsa from different host plants

Author:

Liu Ailing,Li Yuxia,Wang Qiqi,Zhang Xinrui,Xiong Jie,Li Yang,Lei Yonghui,Sun Yanfei

Abstract

Host plants influence rhizosphere microorganism composition through root secretions, and rhizosphere associated microorganisms influence Cistanche seeds germination. At present, little is known about effects of different host plants on soil bacteria and fungi in the rhizosphere of Cistanche salsa. High-throughput sequencing was used here to reveal the similarities and differences in the structural composition of the soil microbial community of C. salsa from six host plants (i.e., Halocnemum strobilaceum, Atriplex patens, Kalidium foliatum, Caroxylon passerinum, Anabasis aphylla, Krascheninnikovia ceratoides). We discovered that Krascheninnikovia ceratoides-parasitizing C. salsa (YRCR6) had the highest diversity of rhizosphere bacterial communities, and Anabasis aphylla -parasitizing C. salsa (YRCR5) had the highest diversity of rhizosphere fungal communities. Fungal communities were more influenced by the host plant than bacterial communities. In addition, we discovered certain rhizosphere microorganisms that may be associated with Cistanche seeds germination, including Mortierella, Aspergillus alliaceus, and Cladosporium, which are account for a relatively high proportion in Halocnemum strobilaceum, Atriplex patens and Anabasis aphylla -parasitizing C. salsa. Redundancy analysis results also revealed that AP, HCO3, pH, Ca2+, SO42–, and K+ had a highly significant impact on the bacterial community structure (P < 0.01), while pH and SO42– had a significant impact on the fungal community structure (P < 0.05). Conclusively, differences were noted in the structure of rhizosphere bacterial and fungal communities of C. salsa parasitizing different plants in the same habit and the difference may be related to the host plant. This result can provide a new ideas for the selection of host plants and the cultivation of C. salsa.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3