Dihydropyrimidinones Against Multiresistant Bacteria

Author:

Castro Jara Marisa,Silva Allison Carlos Assunção,Ritter Marina,da Silva Adriana Fernandes,Gonçalves Carolina Lambrecht,dos Santos Pedro Rassier,Borja Luciano Sisconetto,de Pereira Cláudio Martin Pereira,da Silva Nascente Patrícia

Abstract

The increase in bacterial resistance to antimicrobials has led to high morbidity and mortality rates, posing a major public health problem, requiring the discovery of novel antimicrobial substances. The biological samples were identified as the Gram-negative bacilli Acinetobacter baumannii, Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, Morganella morgannii, Pseudomonas aeruginosa and Serratia marcescens and the Gram-positive cocci Enterococcus faecium, and Staphylococcus aureus, all of them resistant to at least three classes of antimicrobials. The antibacterial activity of the compounds was checked in vitro by determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) by the broth microdilution method and plating in brain heart infusion (BHI) agar, respectively. The chemical characterization of the compounds was performed by measuring the melting point and gas chromatography coupled with mass spectrometry (GC–MS) on a Shimadzu GC–MS-QP system 2010SE. Synthetic compounds showed antimicrobial activity against Gram-positive cocci at MIC concentrations 0.16–80 μg/ml and Gram-negative bacilli at MIC concentrations 23.2–80 μg/ml. Enterococcus faecium and S. aureus had the best MIC values. The results of the cytotoxicity test indicated that the synthetic compounds showed no significant difference in three concentrations tested (5, 20, and 80 μg/ml), allowing cell viability not different from that assigned to the control, without the tested compounds. In this context, the development of DHPM derivatives brings an alternative and perspective on effectiveness of drugs as potential future antimicrobial agents.

Funder

Coordination for the Improvement of Higher Education Personnel

CAPES

Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3