Network pharmacology and molecular docking-based investigations of Kochiae Fructus’s active phytomolecules, molecular targets, and pathways in treating COVID-19

Author:

Khan Shakeel Ahmad,Lee Terence Kin Wah

Abstract

COVID-19 disease is caused by SARS-CoV-2. Hyper-inflammation mediated by proinflammatory cytokines is humans’ primary etiology of SARS-CoV-2 infection. Kochiae Fructus is widely used in China as traditional Chinese medicine (TCM) to treat inflammatory diseases. Due to its anti-inflammatory properties, we hypothesized that Kochiae Fructus would be a promising therapeutic agent for COVID-19. The active phytomolecules, targets, and molecular pathways of Kochiae Fructus in treating COVID-19 have not been explored yet. Network pharmacology analysis was performed to determine the active phytomolecules, molecular targets, and pathways of Kochiae Fructus. The phytomolecules in Kochiae Fructus were retrieved from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, and their potential targets were predicted with the SwissTargetPrediction webserver. COVID-19-related targets were recovered from the GeneCards database. Intersecting targets were determined with the VENNY tool. The Protein-protein interaction (PPI) and Molecular Complex Detection (MCODE) network analyses were constructed using the Cytoscape software. Using the DAVID tool, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed on the intersecting targets. AutoDock Vina (version 1.2.0.) was used for molecular docking analysis. Six active phytomolecules and 165 their potential targets, 1,745 COVID-19-related targets, and 34 intersecting targets were identified. Network analysis determined 13 anti-COVID-19 core targets and three key active phytomolecules (Oleanolic acid, 9E,12Z-octadecadienoic acid, and 11,14-eicosadienoic acid). Three key pathways (pathways in cancer, the TNF signaling pathway, and lipid and atherosclerosis) and the top six anti-COVID-19 core targets (IL-6, PPARG, MAPK3, PTGS2, ICAM1, and MAPK1) were determined to be involved in the treatment of COVID-19 with active phytomolecules of Kochiae Fructus. Molecular docking analysis revealed that three key active phytomolecules of Kochiae Fructus had a regulatory effect on the identified anti-COVID-19 core targets. Hence, these findings offer a foundation for developing anti-COVID-19 drugs based on phytomolecules of Kochiae Fructus.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Reference73 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3