Therapeutic developments for SARS-CoV-2 infection—Molecular mechanisms of action of antivirals and strategies for mitigating resistance in emerging variants in clinical practice

Author:

Săndulescu Oana,Apostolescu Cătălin Gabriel,Preoțescu Liliana Lucia,Streinu-Cercel Adrian,Săndulescu Mihai

Abstract

This article systematically presents the current clinically significant therapeutic developments for the treatment of COVID-19 by providing an in-depth review of molecular mechanisms of action for SARS-CoV-2 antivirals and critically analyzing the potential targets that may allow the selection of resistant viral variants. Two main categories of agents can display antiviral activity: direct-acting antivirals, which act by inhibiting viral enzymes, and host-directed antivirals, which target host cell factors that are involved in steps of the viral life cycle. We discuss both these types of antivirals, highlighting the agents that have already been approved for treatment of COVID-19, and providing an overview of the main molecules that are currently in drug development. Direct-acting antivirals target viral enzymes that are essential in the viral life cycle. Three direct-acting antivirals are currently in use: two are nucleoside analogs that inhibit the RNA-dependent RNA polymerase of SARS-CoV-2, i.e., remdesivir and molnupiravir, and the third one, nirmatrelvir/ritonavir, is an inhibitor of SARS-CoV-2 main protease. The potential for induction of viral resistance is discussed for each of these antivirals, along with their clinical activity on each of the SARS-CoV-2 variants and sublineages that have been dominant over the course of the pandemic, i.e., Alpha, Delta, as well as Omicron and its sublineages BA.1, BA.2, BA.5, BQ.1 and XBB. Host-directed antivirals are currently in preclinical or clinical development; these agents target host cell enzymes that are involved in facilitating viral entry, replication, or virion release. By blocking these enzymes, viral replication can theoretically be effectively stopped. As no SARS-CoV-2 host-directed antiviral has been approved so far, further research is still needed and we present the host-directed antivirals that are currently in the pipeline. Another specific type of agents that have been used in the treatment of COVID-19 are neutralizing antibodies (NAbs). Their main binding site is the spike protein, and therefore their neutralization activity is influenced by mutations occurring in this region. We discuss the main changes in neutralization activity of NAbs for the most important dominant SARS-CoV-2 variants. Close monitoring of emerging variants and sublineages is still warranted, to better understand the impact of viral mutations on the clinical efficiency of antivirals and neutralizing antibodies developed for the treatment of COVID-19.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3