Toxic/Bioactive Peptide Synthesis Genes Rearranged by Insertion Sequence Elements Among the Bloom-Forming Cyanobacteria Planktothrix

Author:

Entfellner Elisabeth,Li Ruibao,Jiang Yiming,Ru Jinlong,Blom Jochen,Deng Li,Kurmayer Rainer

Abstract

It has been generally hypothesized that mobile elements can induce genomic rearrangements and influence the distribution and functionality of toxic/bioactive peptide synthesis pathways in microbes. In this study, we performed in depth genomic analysis by completing the genomes of 13 phylogenetically diverse strains of the bloom-forming freshwater cyanobacteria Planktothrix spp. to investigate the role of insertion sequence (IS) elements in seven pathways. Chromosome size varied from 4.7–4.8 Mbp (phylogenetic Lineage 1 of P. agardhii/P. rubescens thriving in shallow waterbodies) to 5.4–5.6 Mbp (Lineage 2 of P. agardhii/P. rubescens thriving in deeper physically stratified lakes and reservoirs) and 6.3–6.6 Mbp (Lineage 3, P. pseudagardhii/P. tepida including planktic and benthic ecotypes). Although the variation in chromosome size was positively related to the proportion of IS elements (1.1–3.7% on chromosome), quantitatively, IS elements and other paralogs only had a minor share in chromosome size variation. Thus, the major part of genomic variation must have resulted from gene loss processes (ancestor of Lineages 1 and 2) and horizontal gene transfer (HGT). Six of seven peptide synthesis gene clusters were found located on the chromosome and occurred already in the ancestor of P. agardhii/P. rubescens, and became partly lost during evolution of Lineage 1. In general, no increased IS element frequency in the vicinity of peptide synthesis gene clusters was observed. We found a higher proportion of IS elements in ten breaking regions related to chromosomal rearrangements and a tendency for colocalization of toxic/bioactive peptide synthesis gene clusters on the chromosome.

Funder

Austrian Science Fund

Österreichischen Akademie der Wissenschaften

Helmholtz Zentrum München

China Scholarship Council

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3