Metagenomics reveals the effect of long-term fertilization on carbon cycle in the maize rhizosphere

Author:

Li Yanan,Wang Chengyu,Chang Hongyan,Zhang Yumang,Liu Shuxia,He Wentian

Abstract

Long-term fertilization can result in the changes in carbon (C) cycle in the maize rhizosphere soil. However, there have been few reports on the impacts of microbial regulatory mechanisms on the C cycle in soil. In the study, we analyzed the response of functional genes that regulate the C fixation, decomposition and methane (CH4) metabolism in maize rhizosphere soil to different fertilization treatments using metagenomics analysis. As the dominant C fixation pathway in maize rhizosphere soil, the abundance of the functional genes regulating the reductive citrate cycle (rTCA cycle) including korA, korB, and IHD1 was higher under the chemical nitrogen (N) fertilizer treatments [nitrogen fertilizer (N), compound chemical fertilization (NPK), the combination of compound chemical fertilizer with maize straw (NPKS)] than maize straw return treatments [maize straw return (S), the combination of phosphorus and potassium fertilizer with maize straw (PKS)]. The NPK treatment decreased the abundance of functional genes involved in 3-hydroxypropionate bicycle (3-HP cycle; porA, porB, and porD), which was one of the major C fixation pathways in soil aside from dicarboxylate-hydroxybutyrate (DC/4-HB cycle) and Calvin cycle. The abundance of functional genes related to C degradation was higher in S, PKS and NPKS treatments than N and NPK treatments, and chemical N fertilizer application had a significant effect on C degradation. The dominant Methanaogenesis pathway in maize rhizosphere soil, used acetate as a substrate, and was significantly promoted under chemical N fertilizer application. The functional genes that were related to CH4 oxidation (i.e., pmoA and pmoB) were reduced under N and NPK treatments. Moreover, soil chemical properties had a significant impact on the functional genes related to C fixation and degradation, with SOC (r2 = 0.79) and NO3-N (r2 = 0.63) being the main regulators. These results implied that N fertilization rather than maize straw return had a greater influence on the C cycle in maize rhizosphere soil.

Funder

Natural Science Foundation of Jilin Province of China

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3