Author:
Qin Jianru,Hu Bing,Song Qiqi,Wang Ruijuan,Zhang Xiangfei,Yu Yaqi,Wang Jian-Hua
Abstract
The incidence of infections caused by the H7N9 subtype of the influenza virus has expanded rapidly in China in recent decades, generating massive economic loss and posing a significant threat to public health. In the absence of specialized antiviral treatments or long-term effective preventative vaccinations, it is critical to constantly enhance vaccines and create effective antiviral drugs to prevent the recurrence of pandemics. In the present study, a transmembrane-substituted (TM) virus-like particle (VLP)-based vaccine was created by replacing the transmembrane region of hemagglutinin (HA) protein with the transmembrane region of the H3 HA protein and then used to immunize BALB/c mice. Sera and T cells were collected from the immunized mice to evaluate the passive immune effects. Our results showed that naïve mice achieved 80–100% protection against homologous and heterologous H7N9 influenza strains after receiving passive serum immunization; the protective effect of the TM VLPs was more evident than that of the wild-type HA VLPs. In contrast, mice immunized with passive T cells achieved only 20 to 80% protection against homologous or heterologous strains. Our findings significantly contribute to understanding the control of the H7N9 virus and the development of a vaccine.
Subject
Microbiology (medical),Microbiology