Metabarcoding assessment of fungal diversity in brown algae and sponges of Mauritius

Author:

Wong Chin Jessica Mélanie,Puchooa Daneshwar,Bahorun Theeshan,Neergheen Vidushi S.,Aullybux Aadil Ahmad,Beedessee Girish,Nazurally Nadeem,Alrefaei Abdulwahed Fahad,Jeewon Rajesh

Abstract

Marine fungi are largely associated with second most inhabitants of the marine ecosystem such as sponges and algae. They are important colonizers and play vital ecological roles, such as nutrient cycling, organic matter decomposition, and symbiosis with other organisms. High throughput sequencing methods have been used successfully to reveal unknown fungal communities associated with a number of hosts particularly in the marine environment. However, the diversity of marine fungi associated with sponges and brown algae in Mauritius remains largely unknown. Traditional methods based on culturing do not provide reliable estimate of fungal diversity as only those that are able to grow under laboratory conditions are dominant; in addition, a large proportion of fungi, cultured in vitro remain most of the time unidentifiable, given that there are no sporulating structures to be examined morphologically. To overcome these limitations, we employed Illumina sequencing to unravel fungi species present in the sponges, Iotrochota sp. and Biemna sp. and the brown algae Turbinaria conoides, Sargassum pfeifferae, and Sargassum obovatum, collected from the north of Mauritius. Diversity analyses revealed that Biemna sp. had the highest diversity from the sampled sponges with fungi from 24 orders being recovered while from brown algae; Turbinaria conoides had the highest diversity with recovery of fungal taxa of the orders Botryosphaeriales, Chaetothyriales, Eurotiales, Hypocreales, and Mucorales with the latter four orders being common in both sampled algae and sponges. Beta diversity analyses revealed clustering only in the algae, Turbinaria conoides, and Sargassum pfeifferae and not in the co-occurring sponges, indicating that sampling location did not have much influence on fungal diversity. Our findings provide the first amplicon sequencing based insights of the fungal communities associated with macro-algae and sponges in Mauritius and supplements research on the fungal community existing in the oceans around the world.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3