Microbial metabolic activity in Amazon floodplain forest and agricultural soils

Author:

Barros Dayane J.,Carvalho Glauber A.,de Chaves Miriam G.,Vanzela Luiz S.,Kozusny-Andreani Dora Inés,Guarda Emerson A.,Neu Vania,de Morais Paula B.,Tsai Siu M.,Navarrete Acacio A.

Abstract

Microorganisms play an essential role in ecosystem functions. An increasingly used method for conducting functional analyses of a soil microbial community is based on the physiological profile at the community level. This method allows the metabolic capacity of microorganisms to be assessed based on patterns of carbon consumption and derived indices. In the present study, the functional diversity of microbial communities was assessed in soils from seasonally flooded-forest (FOR) and -traditional farming systems (TFS) in Amazonian floodplains flooded with black, clear, and white water. The soils of the Amazon floodplains showed differences in the metabolic activity of their microbial communities, with a general trend in activity level of clear water floodplain > black water floodplain > white water floodplain. The redundancy analysis (RDA) indicated that soil moisture (flood pulse) was the most important environmental parameter in determining the metabolic activity of the soil microbial communities in the black, clear, and white floodplains. In addition, the variance partitioning analysis (VPA) indicated that the microbial metabolic activity of the soil was more influenced by water type (41.72%) than by seasonality (19.55%) and land use type (15.28%). The soil microbiota of the white water floodplain was different from that of the clear water and black water floodplains in terms of metabolic richness, as the white water floodplain was mainly influenced by the low substrate use during the non-flooded period. Taken together, the results show the importance of considering soils under the influence of flood pulses, water types, and land use as environmental factors when recognizing functional diversity and ecosystem functioning in Amazonian floodplains.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

FAPESP

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3