Variation in synonymous evolutionary rates in the SARS-CoV-2 genome

Author:

Sun Qianru,Zeng Jinfeng,Tang Kang,Long Haoyu,Zhang Chi,Zhang Jie,Tang Jing,Xin Yuting,Zheng Jialu,Sun Litao,Liu Siyang,Du Xiangjun

Abstract

IntroductionCoronavirus disease 2019 is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Influential variants and mutants of this virus continue to emerge, and more effective virus-related information is urgently required for identifying and predicting new mutants. According to earlier reports, synonymous substitutions were considered phenotypically silent; thus, such mutations were frequently ignored in studies of viral mutations because they did not directly cause amino acid changes. However, recent studies have shown that synonymous substitutions are not completely silent, and their patterns and potential functional correlations should thus be delineated for better control of the pandemic.MethodsIn this study, we estimated the synonymous evolutionary rate (SER) across the SARS-CoV-2 genome and used it to infer the relationship between the viral RNA and host protein. We also assessed the patterns of characteristic mutations found in different viral lineages.ResultsWe found that the SER varies across the genome and that the variation is primarily influenced by codon-related factors. Moreover, the conserved motifs identified based on the SER were found to be related to host RNA transport and regulation. Importantly, the majority of the existing fixed-characteristic mutations for five important virus lineages (Alpha, Beta, Gamma, Delta, and Omicron) were significantly enriched in partially constrained regions.DiscussionTaken together, our results provide unique information on the evolutionary and functional dynamics of SARS-CoV-2 based on synonymous mutations and offer potentially useful information for better control of the SARS-CoV-2 pandemic.

Funder

Shenzhen Science and Technology Innovation Program

Natural Science Foundation of Guangdong Province

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Reference75 articles.

1. The proximal origin of SARS-CoV-2;Andersen;Nat. Med.,2020

2. Genomic and proteomic mutation landscapes of SARS-CoV-2;Badua;J. Med. Virol.,2021

3. STREME: accurate and versatile sequence motif discovery;Bailey;Bioinformatics,2021

4. The MEME Suite;Bailey;Nucleic Acids Res.,2015

5. D614G mutation and SARS-CoV-2: impact on S-protein structure, function, infectivity, and immunity;Bhattacharya;Appl. Microbiol. Biotechnol.,2021

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3