Evaluating the abiotic synthesis potential and the stability of building blocks of life beneath an impact-induced steam atmosphere

Author:

Zhang Zongbin,Jiang Haofan,Ju Pengcheng,Pan Lu,Rouillard Joti,Zhou Gentao,Huang Fang,Hao Jihua

Abstract

A prerequisite for prebiotic chemistry is the accumulation of critical building blocks of life. Some studies argue that more frequent impact events on the primitive Earth could have induced a more reducing steam atmosphere and thus favor widespread and more efficient synthesis of life building blocks. However, elevated temperature is also proposed to threaten the stability of organics and whether life building blocks could accumulate to appreciable levels in the reducing yet hot surface seawater beneath the steam atmosphere is still poorly examined. Here, we used a thermodynamic tool to examine the synthesis affinity of various life building blocks using inorganic gasses as reactants at elevated temperatures and corresponding steam pressures relevant with the steam-seawater interface. Our calculations show that although the synthesis affinity of all life building blocks decreases when temperature increases, many organics, including methane, methanol, and carboxylic acids, have positive synthesis affinity over a wide range of temperatures, implying that these species were favorable to form (>10–6 molal) in the surface seawater. However, cyanide and formaldehyde have overall negative affinities, suggesting that these critical compounds would tend to undergo hydrolysis in the surface seawaters. Most of the 18 investigated amino acids have positive affinities at temperature <220°C and their synthesis affinity increases under more alkaline conditions. Sugars, ribose, and nucleobases have overall negative synthesis affinities at the investigated range of temperatures. Synthesis affinities are shown to be sensitive to the hydrogen fugacity. Higher hydrogen fugacity (in equilibrium with FQI or IW) favors the synthesis and accumulation of nearly all the investigated compounds, except for HCN and its derivate products. In summary, our results suggest that reducing conditions induced by primitive impacts could indeed favor the synthesis/accumulation of some life building blocks, but some critical species, particularly HCN and nucleosides, were still unfavorable to accumulate to appreciable levels. Our results can provide helpful guidance for future efforts to search for or understand the stability of biomolecules on other planets like Mars and icy moons. We advocate examining craters formed by more reducing impactors to look for the preservation of prebiotic materials.

Funder

National Natural Science Foundation of China

Canadian Institute for Advanced Research

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3