A C∧S-Cyclometallated Gold(III) Complex as a Novel Antibacterial Candidate Against Drug-Resistant Bacteria

Author:

Ratia Carlos,Cepas Virginio,Soengas Raquel,Navarro Yolanda,Velasco-de Andrés María,Iglesias María José,Lozano Francisco,López-Ortiz Fernando,Soto Sara M.

Abstract

The worldwide emergence and spread of infections caused by multidrug-resistant bacteria endangers the efficacy of current antibiotics in the clinical setting. The lack of new antibiotics in the pipeline points to the need of developing new strategies. Recently, gold-based drugs are being repurposed for antibacterial applications. Among them, gold(III) complexes have received increasing attention as metal-based anticancer agents. However, reports on their antibacterial activity are scarce due to stability issues. The present work demonstrates the antibacterial activity of the gold(III) complex 2 stabilized as CS-cycloaurated containing a diphenylphosphinothioic amide moiety, showing minimum inhibitory concentration (MIC) values that ranged from 4 to 8 and from 16 to 32 mg/L among Gram-positive and Gram-negative multidrug-resistant (MDR) pathogens, respectively. Complex 2 has a biofilm inhibitory activity of only two to four times than its MIC. We also describe for the first time a potent antibacterial synergistic effect of a gold(III) complex combined with colistin, showing a bactericidal effect in less than 2 h; confirming the role of the outer membrane as a permeability barrier. Complex 2 shows a low rate of internalization in Staphylococcus aureus and Acinetobacter baumannii; it does not interact with replication enzymes or efflux pumps, causes ultrastructural damages in both membrane and cytoplasmic levels, and permeabilizes the bacterial membrane. Unlike control antibiotics, complex 2 did not generate resistant mutants in 30-day sequential cultures. We detected lower cytotoxicity in a non-tumoral THLE-2 cell line (IC50 = 25.5 μM) and no acute toxicity signs in vivo after an i.v. 1-mg/kg dose. The characterization presented here reassures the potential of complex 2 as a new chemical class of antimicrobial agents.

Funder

Instituto de Salud Carlos III

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3