Indirect influence of soil enzymes and their stoichiometry on soil organic carbon response to warming and nitrogen deposition in the Tibetan Plateau alpine meadow

Author:

Xuemei Xiang,Kejia De,Weishan Lin,Tingxu Feng,Fei Li,Xijie Wei

Abstract

Despite extensive research on the impact of warming and nitrogen deposition on soil organic carbon components, the response mechanisms of microbial community composition and enzyme activity to soil organic carbon remain poorly understood. This study investigated the effects of warming and nitrogen deposition on soil organic carbon components in the Tibetan Plateau alpine meadow and elucidated the regulatory mechanisms of microbial characteristics, including soil microbial community, enzyme activity, and stoichiometry, on organic carbon components. Results indicated that both warming and nitrogen deposition significantly increased soil organic carbon, readily oxidizable carbon, dissolved organic carbon, and microbial biomass carbon. The interaction between warming and nitrogen deposition influenced soil carbon components, with soil organic carbon, readily oxidizable carbon, and dissolved organic carbon reaching maximum values in the W0N32 treatment, while microbial biomass carbon peaked in the W3N32 treatment. Warming and nitrogen deposition also significantly increased soil Cellobiohydrolase, β-1,4-N-acetylglucosaminidase, leucine aminopeptidase, and alkaline phosphatase. Warming decreased the soil enzyme C: N ratio and C:P ratio but increased the soil enzyme N:P ratio, while nitrogen deposition had the opposite effect. The bacterial Chao1 index and Shannon index increased significantly under warming conditions, particularly in the N32 treatment, whereas there were no significant changes in the fungal Chao1 index and Shannon index with warming and nitrogen addition. Structural equation modeling revealed that soil organic carbon components were directly influenced by the negative impact of warming and the positive impact of nitrogen deposition. Furthermore, warming and nitrogen deposition altered soil bacterial community composition, specifically Gemmatimonadota and Nitrospirota, resulting in a positive impact on soil enzyme activity, particularly soil alkaline phosphatase and β-xylosidase, and enzyme stoichiometry, including N:P and C:P ratios. In summary, changes in soil organic carbon components under warming and nitrogen deposition in the alpine meadows of the Tibetan Plateau primarily depend on the composition of soil bacterial communities, soil enzyme activity, and stoichiometric characteristics.

Funder

National Key Research and Development Program

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3