Video frame prediction of microbial growth with a recurrent neural network

Author:

Robertson Connor,Wilmoth Jared L.,Retterer Scott,Fuentes-Cabrera Miguel

Abstract

The recent explosion of interest and advances in machine learning technologies has opened the door to new analytical capabilities in microbiology. Using experimental data such as images or videos, machine learning, in particular deep learning with neural networks, can be harnessed to provide insights and predictions for microbial populations. This paper presents such an application in which a Recurrent Neural Network (RNN) was used to perform prediction of microbial growth for a population of two Pseudomonas aeruginosa mutants. The RNN was trained on videos that were acquired previously using fluorescence microscopy and microfluidics. Of the 20 frames that make up each video, 10 were used as inputs to the network which outputs a prediction for the next 10 frames of the video. The accuracy of the network was evaluated by comparing the predicted frames to the original frames, as well as population curves and the number and size of individual colonies extracted from these frames. Overall, the growth predictions are found to be accurate in metrics such as image comparison, colony size, and total population. Yet, limitations exist due to the scarcity of available and comparable data in the literature, indicating a need for more studies. Both the successes and challenges of our approach are discussed.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3