Genome-Based Taxonomic Rearrangement of the Order Geobacterales Including the Description of Geomonas azotofigens sp. nov. and Geomonas diazotrophica sp. nov.

Author:

Xu Zhenxing,Masuda Yoko,Wang Xueding,Ushijima Natsumi,Shiratori Yutaka,Senoo Keishi,Itoh Hideomi

Abstract

Geobacterales is a recently proposed order comprising members who originally belonged to the well-known family Geobacteraceae, which is a key group in terrestrial ecosystems involved in biogeochemical cycles and has been widely investigated in bioelectrochemistry and bioenergy fields. Previous studies have illustrated the taxonomic structure of most members in this group based on genomic phylogeny; however, several members are still in a pendent or chaotic taxonomic status owing to the lack of genome sequences. To address this issue, we performed this taxonomic reassignment using currently available genome sequences, along with the description of two novel paddy soil-isolated strains, designated Red51T and Red69T, which are phylogenetically located within this order. Phylogenomic analysis based on 120 ubiquitous single-copy proteins robustly separated the species Geobacter luticola from other known genera and placed the genus Oryzomonas (fam. Geobacteraceae) into the family ‘Pseudopelobacteraceae’; thus, a novel genus Geomobilimonas is proposed, and the family ‘Pseudopelobacteraceae’ was emended. Moreover, genomic comparisons with similarity indexes, including average amino acid identity (AAI), percentage of conserved protein (POCP), and average nucleotide identity (ANI), showed proper thresholds as genera boundaries in this order with values of 70%, 65%, and 74% for AAI, POCP, and ANI, respectively. Based on this, the three species Geobacter argillaceus, Geobacter pelophilus, and Geobacter chapellei should be three novel genera, for which the names Geomobilibacter, Geoanaerobacter, and Pelotalea are proposed, respectively. In addition, the two novel isolated strains phylogenetically belonged to the genus Geomonas, family Geobacteraceae, and shared genomic similarity values higher than those of genera boundaries, but lower than those of species boundaries with each other and their neighbors. Taken together with phenotypic and chemotaxonomic characteristics similar to other Geomonas species, these two strains, Red51T and Red69T, represent two novel species in the genus Geomonas, for which the names Geomonas azotofigens sp. nov. and Geomonas diazotrophica sp. nov. are proposed, respectively.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3