ERV14 receptor impacts mycelial growth via its interactions with cell wall synthase and transporters in Aspergillus niger

Author:

Zheng Junwei,Yao Linlin,Zeng Xu,Wang Bin,Pan Li

Abstract

Efficient protein secretion is closely correlated with vesicle sorting and packaging, especially with cargo receptor-mediated selective transport for ER exit. Even though Aspergillus niger is considered an industrially natural host for protein production due to its exceptional secretion capacity, the trafficking mechanism in the early secretory pathway remains a black box for us to explore. Here, we identified and characterized all putative ER cargo receptors of the three families in A. niger. We successfully constructed overexpression and deletion strains of each receptor and compared the colony morphology and protein secretion status of each strain. Among them, the deletion of Erv14 severely inhibited mycelial growth and secretion of extracellular proteins such as glucoamylase. To gain a comprehensive understanding of the proteins associated with Erv14, we developed a high-throughput method by combining yeast two-hybrid (Y2H) with next-generation sequencing (NGS) technology. We found Erv14 specifically interacted with transporters. Following further validation of the quantitative membrane proteome, we determined that Erv14 was associated with the transport of proteins involved in processes such as cell wall synthesis, lipid metabolism, and organic substrate metabolism.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3