Bacterial Competition Influences the Ability of Symbiotic Bacteria to Colonize Western Flower Thrips

Author:

Andongma Awawing A.,Whitten Miranda M. A.,Sol Ricardo Del,Hitchings Matthew,Dyson Paul J.

Abstract

Symbiont mediated RNAi (SMR) is a promising method for precision control of pest insect species such as Western Flower Thrips (WFT). Two species of bacteria are known to be dominant symbiotic bacteria in WFT, namely BFo1 and BFo2 (Bacteria from Frankliniella occidentalis 1 and 2), as we here confirm by analysis of next-generation sequence data derived to obtain a reference WFT genome sequence. Our first demonstration of SMR in WFT used BFo2, related to Pantoea, isolated from a domesticated Dutch thrips population. However, for successful use of SMR as a thrips control measure, these bacteria need to successfully colonize different environmental thrips populations. Here, we describe a United Kingdom thrips population that does not harbour BFo2, but does contain BFo1, a species related to Erwinia. Attempts to introduce BFo2 indicate that this bacterium is unable to establish itself in the United Kingdom thrips, in contrast to successful colonization by a strain of BFo1 expressing green fluorescent protein. Fluorescence microscopy indicates that BFo1 occupies similar regions of the thrips posterior midgut and hindgut as BFo2. Bacterial competition assays revealed that a barrier to BFo2 establishing itself in thrips is the identity of the resident BFo1; BFo1 isolated from the United Kingdom thrips suppresses growth of BFo2 to a greater extent than BFo1 from the Dutch thrips that is permissive for BFo2 colonization. The ability of the latter strain of BFo1 to colonize the United Kingdom thrips is also likely attributable to its ability to out-compete the resident BFo1. Lastly, we observed that United Kingdom thrips pre-exposed to the Dutch BFo1 could then be successfully colonized by BFo2. These results indicate, for the first time, that microbial competition and strain differences can have a large influence on how symbiotic bacteria can colonize different populations of an insect species.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3