Phosphorylation of Extracellular Proteins in Acinetobacter baumannii in Sessile Mode of Growth

Author:

Massier Sébastien,Robin Brandon,Mégroz Marianne,Wright Amy,Harper Marina,Hayes Brooke,Cosette Pascal,Broutin Isabelle,Boyce John D.,Dé Emmanuelle,Hardouin Julie

Abstract

Acinetobacter baumannii is a problematic nosocomial pathogen owing to its increasing resistance to antibiotics and its great ability to survive in the hospital environment, which is linked to its capacity to form biofilms. Structural and functional investigations of post-translational modifications, such as phosphorylations, may lead to identification of candidates for therapeutic targets against this pathogen. Here, we present the first S/T/Y phosphosecretome of two A. baumannii strains, the reference strain ATCC 17978 and the virulent multi-drug resistant strain AB0057, cultured in two modes of growth (planktonic and biofilm) using TiO2 chromatography followed by high resolution mass spectrometry. In ATCC 17978, we detected a total of 137 (97 phosphoproteins) and 52 (33 phosphoproteins) phosphosites in biofilm and planktonic modes of growth, respectively. Similarly, in AB0057, 155 (119 phosphoproteins) and 102 (74 phosphoproteins) phosphosites in biofilm and planktonic modes of growth were identified, respectively. Both strains in the biofilm mode of growth showed a higher number of phosphosites and phosphoproteins compared to planktonic growth. Several phosphorylated sites are localized in key regions of proteins involved in either drug resistance (β-lactamases), adhesion to host tissues (pilins), or protein secretion (Hcp). Site-directed mutagenesis of the Hcp protein, essential for type VI secretion system-mediated interbacterial competition, showed that four of the modified residues are essential for type VI secretion system activity.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3