The Gut Bacteria Dysbiosis Contributes to Chronic Graft-Versus-Host Disease Associated With a Treg/Th1 Ratio Imbalance

Author:

Wang Yulian,Huang Lisi,Huang Tian,Geng Suxia,Chen Xiaomei,Huang Xin,Lai Peilong,Du Xin,Weng Jianyu

Abstract

IntroductionDysbiosis of gut bacteria has been discovered in a large number of autoimmune diseases. However, the influence of the gut bacteria in the mice model of chronic sclerodermatous graft-versus-host disease (Scl-GVHD), a disease that resembles an autoimmune disease characterized by chronic inflammation of multiple organs, such as skin, remains elusive. Here, we explore the role of gut bacteria in an Scl-cGVHD mice model.MethodsWe established a mouse model of Scl-cGVHD, collected fecal flora, analyzed the composition, and diversity of intestinal flora using 16S rDNA amplicon sequencing, and detected the proportion of Treg and Th1 cells in splenocytes of Scl-cGVHD mice. To verify the immunoregulatory effect of Scl-cGVHD intestinal flora, we prepared bacterial extracts, co-cultured with splenocytes in vitro, and used flow cytometry to detect T cell differentiation and cytokine secretion.ResultsBy examining T-cell differentiation in splenocytes of cGVHD mice, we found that Treg cells were significantly reduced (15.27 ± 0.23 vs. 12.23 ± 0.47, p = 0.0045) and Th1 cells were increased (1.54 ± 0.18 vs. 6.68 ± 0.80, p = 0.0034) in cGVHD mice. Significant differences were observed in the composition and diversity of the gut bacteria in mice with Scl-cGVHD versus without GVHD. Analysis of mice fecal bacteria samples (n = 10, 5 Scl-cGVHD and 5 Non-GVHD) showed significant separation [R = 0.732, p = 0.015, non-parametric analysis (ANOSIM)] in Scl-cGVHD and non-GVHD mice. The abundance of the family and genus Ruminococcaceae bacteria decreased and the family Lachnospiraceae and limited to the species Lachnospiraceae_bacterium_DW17 increased in Scl-cGVHD mice. In vitro results of the cellular level study suggest that the bacteria extracts of gut microbiota from Scl-cGVHD mice modulated the splenic T cells toward differentiation into CD4+IFN-γ+ Th1 cells (14.37 ± 0.32 vs. 10.40 ± 2.19, p = 0.036), and the percentage of CD4+CD25+Foxp3+ Tregs decreased (6.36 ± 0.39 vs. 8.66 ± 0.07, p = 0.001) compared with the non-GVHD mice. In addition, the secretion of proinflammatory interferon- γ (IFN-γ) cytokine in the supplement of cellular culture was increased (4,898.58 ± 235.82 vs. 4,347.87 ± 220.02 pg/ml, p = 0.042) in the mice model of the Scl-cGVHD group, but anti-inflammatory interleukin (IL)-10 decreased (7,636.57 ± 608.05 vs. 9,563.56 ± 603.34 pg/ml, p = 0.018).ConclusionOur data showed the different composition and diversity of gut bacteria in the Scl-cGVHD mice. The dysbiosis of gut bacteria may regulate the differentiation ratio of Treg and Th1 cells, which was associated with Scl-cGVHD.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3