Osmotic response in Leptospirillum ferriphilum isolated from an industrial copper bioleaching environment to sulfate

Author:

Arias Dayana,Zepeda Víctor,Nancucheo Ivan,Saldaña Manuel,Galleguillos Pedro A.

Abstract

Iron and sulfur-oxidizing microorganisms play important roles in several natural and industrial processes. Leptospirillum (L.) ferriphilum, is an iron-oxidizing microorganism with a remarkable adaptability to thrive in extreme acidic environments, including heap bioleaching processes, acid mine drainage (AMD) and natural acidic water. A strain of L. ferriphilum (IESL25) was isolated from an industrial bioleaching process in northern Chile. This strain was challenged to grow at increasing concentrations of sulfate in order to assess changes in protein expression profiles, cells shape and to determine potential compatible solute molecules. The results unveiled changes in three proteins: succinyl CoA (SCoA) synthetase, isocitrate dehydrogenase (IDH) and aspartate semialdehyde dehydrogenase (ASD); which were notably overexpressed when the strain grew at elevated concentrations of sulfate. ASD plays a pivotal role in the synthesis of the compatible solute ectoine, which was identified along with hydroxyectoine by using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF). The relationship between IDH, SCoA, and ectoine production could be due to the TCA cycle, in which both enzymes produce metabolites that can be utilized as precursors or intermediates in the biosynthesis of ectoine. In addition, distinct filamentous cellular morphology in L. ferriphilum IESL25 was observed when growing under sulfate stress conditions. This study highlights a new insight into the possible cellular responses of L. ferriphilum under the presence of high sulfate levels, commonly found in bioleaching of sulfide minerals or AMD environments.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3