Identification of ophiostomatalean fungi associated with Tomicus pilifer infesting Pinus koraiensis in Northeastern China

Author:

Wang Huimin,Liu Caixia,Yue Fangzheng,Yan Dong-Hui,Lu Quan

Abstract

Ophiostomatalean fungi usually facilitate bark beetles to infest tree hosts and seriously endanger the health of coniferous forests. Tomicus pilifer Spessivtsev is a common endemic bark beetle in Asia and primarily threatens Pinus koraiensis. Tomicus species have similar morphology; however, they can be differentiated by their genetic characteristics through phylogenetic analyses. To date, the 28S rDNA sequence of T. pilifer and the diversity of ophiostomatalean fungi associated with T. pilifer have not been reported. In this study, we aimed to clarify the taxonomic status of T. pilifer and identify ophiostomatalean fungi associated with T. pilifer infesting P. koraiensis in northeastern China. In total, 315 ophiostomatalean fungal strains were isolated from 62 adults of T. pilifer and 220 tissue samples from T. pilifer galleries in Jilin Province. Thirty-five representative strains were further identified by comparing their morphological and physiological characteristics and conducting the phylogenetic analysis of ITS, ITS2-LSU, TUB2, and TEF1-α. We identified nine species of ophiostomatalean fungi belonging to four genera, which included six novel species (Ceratocystiopsis changbaiensis sp. nov., Leptographium linjiangense sp. nov., Leptographium qieshaoense sp. nov., Ophiostoma piliferi sp. nov., Ophiostoma tonghuaense sp. nov., and Ophiostoma yaluense sp. nov.), two previously described species (Graphilbum interstitiale and Ophiostoma fuscum), and one undefined specie (Ceratocystiopsis sp. 1). To the best of our knowledge, this is the first report of G. interstitiale and O. fuscum in China and the fungal diversity of ophiostomatalean in T. pilifer. The dominant species were O. piliferi and L. qieshaoense, representing 39.37% and 35.87% of the isolates, respectively. The results of this study provide valuable information on the symbiotic relationship between bark beetles and ophiostomatalean fungi.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3