Comparative Genomic Analysis and a Novel Set of Missense Mutation of the Leptospira weilii Serogroup Mini From the Urine of Asymptomatic Dogs in Thailand

Author:

Kurilung Alongkorn,Perreten Vincent,Prapasarakul Nuvee

Abstract

Leptospira weilii belongs to the pathogenic Leptospira group and is a causal agent of human and animal leptospirosis in many world regions. L. weilii can produce varied clinical presentations from asymptomatic through acute to chronic infections and occupy several ecological niches. Nevertheless, the genomic feature and genetic basis behind the host adaptability of L. weilii remain elusive due to limited information. Therefore, this study aimed to examine the complete circular genomes of two new L. weilii serogroup Mini strains (CUDO6 and CUD13) recovered from the urine of asymptomatic dogs in Thailand and then compared with the 17 genomes available for L. weilii. Variant calling analysis (VCA) was also undertaken to gain potential insight into the missense mutations, focusing on the known pathogenesis-related genes. Whole genome sequences revealed that the CUDO6 and CUD13 strains each contained two chromosomes and one plasmid, with average genome size and G+C content of 4.37 Mbp and 40.7%, respectively. Both strains harbored almost all the confirmed pathogenesis-related genes in Leptospira. Two novel plasmid sequences, pDO6 and pD13, were identified in the strains CUDO6 and CUD13. Both plasmids contained genes responsible for stress response that may play important roles in bacterial adaptation during persistence in the kidneys. The core-single nucleotide polymorphisms phylogeny demonstrated that both strains had a close genetic relationship. Amongst the 19 L. weilii strains analyzed, the pan-genome analysis showed an open pan-genome structure, correlated with their high genetic diversity. VCA identified missense mutations in genes involved in endoflagella, lipopolysaccharide (LPS) structure, mammalian cell entry protein, and hemolytic activities, and may be associated with host-adaptation in the strains. Missense mutations of the endoflagella genes of CUDO6 and CUD13 were associated with loss of motility. These findings extend the knowledge about the pathogenic molecular mechanisms and genomic evolution of this important zoonotic pathogen.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3