The Transcription Factor VpxlnR Is Required for the Growth, Development, and Virulence of the Fungal Pathogen Valsa pyri

Author:

He Feng,Kange Alex-Machio,Yang Jie,Xiao Jiaxin,Wang Rongbo,Yang Lu,Jia Yifan,Fu Zheng Qing,Zhao Yancun,Liu Fengquan

Abstract

Pears (Pyrus sp.) are widely cultivated in China, and their yield accounts for more than 60% of global pear production. The fungal pathogen Valsa pyri is a major causal agent of pear canker disease, which results in enormous losses of pear production in northern China. In this study, we characterized a Zn2Cys6 transcription factor that contains one GAL4 domain and a fungal-trans domain, which are present in VpxlnR. The vpxlnR gene expression was upregulated in the invasion stage of V. pyri. To investigate its functions, we constructed gene deletion mutants and complementary strains. We observed that the growth of the vpxlnR mutants was reduced on potato dextrose agar (PDA), Czapek plus glucose or sucrose compared with that of the wild-type strain. Additionally, vpxlnR mutants exhibited loss of function in fruiting body formation. Moreover, vpxlnR mutants were more susceptible to hydrogen peroxide (H2O2) and salicylic acid (SA) and were reduced in their virulence at the early infection stage. According to a previous study, VpxlnR-interacting motifs containing NRHKGNCCGM were searched in the V. pyri genome, and we obtained 354 target genes, of which 148 genes had Clusters of Orthologous Groups (COG) terms. PHI-BLAST was used to identify virulence-related genes, and we found 28 hits. Furthermore, eight genes from the 28 PHI-BLAST hits were further assessed by yeast one-hybrid (Y1H) assays, and five target genes, salicylate hydroxylase (VP1G_09520), serine/threonine-protein kinase (VP1G_03128), alpha-xylosidase (VP1G_06369), G-protein beta subunit (VP1G_02856), and acid phosphatase (VP1G_03782), could interact with VpxlnR in vivo. Their transcript levels were reduced in one or two vpxlnR mutants. Taken together, these findings imply that VpxlnR is a key regulator of growth, development, stress, and virulence through controlling genes involved in signaling pathways and extracellular enzyme activities in V. pyri. The motifs interacting with VpxlnR also provide new insights into the molecular mechanism of xlnR proteins.

Funder

Anhui Provincial Natural Science Foundation

Earmarked Fund for China Agriculture Research System

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3