Genomic Analysis of the 1-Aminocyclopropane-1-Carboxylate Deaminase-Producing Pseudomonas thivervalensis SC5 Reveals Its Multifaceted Roles in Soil and in Beneficial Interactions With Plants

Author:

Nascimento Francisco X.,Urón Paola,Glick Bernard R.,Giachini Admir,Rossi Márcio J.

Abstract

Beneficial 1-aminocyclopropane-1-carboxylate (ACC) deaminase-producing bacteria promote plant growth and stress resistance, constituting a sustainable alternative to the excessive use of chemicals in agriculture. In this work, the increased plant growth promotion activity of the ACC deaminase-producing Pseudomonas thivervalensis SC5, its ability to limit the growth of phytopathogens, and the genomics behind these important properties are described in detail. P. thivervalensis SC5 displayed several active plant growth promotion traits and significantly increased cucumber plant growth and resistance against salt stress (100mmol/L NaCl) under greenhouse conditions. Strain SC5 also limited the in vitro growth of the pathogens Botrytis cinerea and Pseudomonas syringae DC3000 indicating active biological control activities. Comprehensive analysis revealed that P. thivervalensis SC5 genome is rich in genetic elements involved in nutrient acquisition (N, P, S, and Fe); osmotic stress tolerance (e.g., glycine-betaine, trehalose, and ectoine biosynthesis); motility, chemotaxis and attachment to plant tissues; root exudate metabolism including the modulation of plant phenolics (e.g., hydroxycinnamic acids), lignin, and flavonoids (e.g., quercetin); resistance against plant defenses (e.g., reactive oxygens species-ROS); plant hormone modulation (e.g., ethylene, auxins, cytokinins, and salicylic acid), and bacterial and fungal phytopathogen antagonistic traits (e.g., 2,4-diacetylphloroglucinol, HCN, a fragin-like non ribosomal peptide, bacteriocins, a lantipeptide, and quorum-quenching activities), bringing detailed insights into the action of this versatile plant-growth-promoting bacterium. Ultimately, the combination of both increased plant growth promotion/protection and biological control abilities makes P. thivervalensis SC5 a prime candidate for its development as a biofertilizer/biostimulant/biocontrol product. The genomic analysis of this bacterium brings new insights into the functioning of Pseudomonas and their role in beneficial plant-microbe interactions.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3