Interactive effects between the invasive weed Stellera chamaejasme and grass: can arbuscular mycorrhizal fungi and fungal pathogens coregulate interspecific relationships?

Author:

Zhang Ruohui,Qu Shanmin,Zhang Bin,Gao Ying,Xing Fu

Abstract

The interaction between poisonous weeds and neighboring plants is complex. Poisonous weeds frequently have a competitive advantage in the interaction between poisonous weeds and neighboring plants. Arbuscular mycorrhizal fungi (AMF) and plant pathogenic fungi (PPF) are closely related to the interspecific relationships of plants. However, the role of AMF and PPF between poisonous weeds and neighboring grasses remains unclear. Here, we designed a pot experiment to determine the interspecific relationship between Leymus chinensis and Stellera chamaejasme and the regulation of AMF and PPF. The results showed that interactive effects between L. chinensis and S. chamaejasme significantly inhibited the aboveground growth of both but promoted the underground growth of L. chinensis. As the proportions of S. chamaejasme increased, the total nitrogen content and pH in the rhizosphere soil of L. chinensis were reduced, the soil pH of S. chamaejasme was reduced, and the relative abundance of AMF in the rhizosphere soil of L. chinensis significantly increased and that of S. chamaejasme decreased considerably. The relative abundances of PPF in the rhizosphere soil of both in the mono-cultures were significantly higher than those in the mixed cultures. Structural equation modeling indicated that soil abiotic (pH and N availability) and biotic (AMF and PPF) factors are major drivers explaining the interactive effects between L. chinensis and S. chamaejasme. We provided new evidence for the interspecific interactions between poisonous weeds and neighboring grasses and revealed the regulatory role of AMF and PPF in the interactive effects of both plants. This study will provide a scientific basis for the prevention and control of poisonous weeds and the vegetation restoration of degraded grasslands in the future.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3