Identification of Microbiological Activities in Wet Flue Gas Desulfurization Systems

Author:

Martin Gregory,Sharma Shagun,Ryan William,Srinivasan Nanda K.,Senko John M.

Abstract

Thermoelectric power generation from coal requires large amounts of water, much of which is used for wet flue gas desulfurization (wFGD) systems that minimize sulfur emissions, and consequently, acid rain. The microbial communities in wFGDs and throughout thermoelectric power plants can influence system performance, waste processing, and the long term stewardship of residual wastes. Any microorganisms that survive in wFGD slurries must tolerate high total dissolved solids concentrations (TDS) and temperatures (50–60°C), but the inocula for wFGDs are typically from fresh surface waters (e.g., lakes or rivers) of low TDS and temperatures, and whose activity might be limited under the physicochemically extreme conditions of the wFGD. To determine the extents of microbiological activities in wFGDs, we examined the microbial activities and communities associated with three wFGDs. O2 consumption rates of three wFGD slurries were optimal at 55°C, and living cells could be detected microscopically, indicating that living and active communities of organisms were present in the wFGD and could metabolize at the high temperature of the wFGD. A 16S rRNA gene-based survey revealed that the wFGD-associated microbial communities included taxa attributable to both thermophilic and mesophilic lineages. Metatranscriptomic analysis of one of the wFGDs indicated an abundance of active Burholderiaceae and several Gammaproteobacteria, and production of transcripts associated with carbohydrate metabolism, osmotic stress response, as well as phage, prophages, and transposable elements. These results illustrate that microbial activities can be sustained in physicochemically extreme wFGDs, and these activities may influence the performance and environmental impacts of thermoelectric power plants.

Funder

Electric Power Research Institute

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3